Qingguo Zhou Zebang Shen Binbin Yong Rui Zhao Peng Zhi

Theories and Practices of Self-Driving Vehicles

THEORIES AND PRACTICES OF SELF-DRIVING VEHICLES

QINGGUO ZHOU

Professor, Lanzhou University and Deputy Director, Engineering Research Center for Open Source Software and Real-Time Systems, Ministry of Education, China

ZEBANG SHEN

R&D Center, Mercedes-Benz Group AG, Beijing, China

BINBIN YONG

An associate professor and masters supervisor in the School of Information Science and Engineering, Lanzhou University, China

RUI ZHAO

School of Information Science & Engineering, Lanzhou University, Lanzhou, Gansu, China

PENG ZHI

School of Information Science & Engineering, Lanzhou University, Lanzhou, Gansu, China

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright ${\rm ©}$ 2022 Huazhong University of Science and Technology Press. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-99448-4

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Glyn Jones Acquisitions Editor: Glyn Jones Editorial Project Manager: Naomi Robertson Production Project Manager: Prasanna Kalyanaraman Cover Designer: Christian J. Bilbow

Supported by the textbook construction fund of Lanzhou University

Typeset by TNQ Technologies

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Contents

Contributors		ix
1.	First acquaintance with unmanned vehicles Zebang Shen, Ming Lei, Peng Zhi and Rui Zhao	1
	 1.1 What are unmanned vehicles? 1.2 Why do we need unmanned vehicles? 1.3 Basic framework of the unmanned vehicle system 1.4 Development environment configuration 	2 7 9 22
	References	25
2.	Introduction to robot operating system Zebang Shen, Xiaowei Xu, Peng Zhi and Rui Zhao	27
	2.1 ROS introduction References	28 62
3.	Localization for unmanned vehicle Zebang Shen, Gang Huang, Peng Zhi and Rui Zhao	
	 3.1 Principle of achieving localization 3.2 ICP algorithm 3.3 Normal distribution transform 3.4 Localization system based on global positioning system (GPS) 	63 65 72
	+ inertial navigation system (INS) 3.5 SLAM-based localization system References	81 87 93
4.	State estimation and sensor fusion Zebang Shen, Yu Sun, Peng Zhi and Rui Zhao	95
	 4.1 Kalman filter and state estimation 4.2 Advanced motion modeling and EKF 4.3 UKF References 	96 115 138 144

5.	Intr	oduction of machine learning and neural networks	147
	Zeb	ang Shen, Binbin Yong and Peng Zhi	
	5.1	Basic concepts of machine learning	148
	5.2	Supervised learning	151
	5.3	Fundamentals of neural network	157
	5.4	Using Keras to implement the neural network	165
	Refe	erences	175
6.	Dee	ep learning and visual perception	177
	Zeb	ang Shen, Tingting Yu, Peng Zhi and Rui Zhao	
	6.1	Deep feedforward neural networks—why is it necessary to be deep?	178
	6.2	Regularization technology applied to deep neural networks	180
	6.3	Actual combat—traffic sign recognition	187
	6.4	Introduction to convolutional neural networks	196
	6.5	Vehicle detection based on YOLO2	206
	Refe	erences	216
7.	Tra	nsfer learning and end-to-end self-driving	217
	Zeb	ang Shen, Yunfei Che and Rui Zhao	
	7.1	Transfer learning	218
	7.2	End-to-end selfdriving	220
	7.3	End-to-end selfdriving simulation	221
	7.4	Summary of this chapter	228
	Refe	erences	229
8.	Get	ting started with self-driving planning	231
	Zeb	ang Shen, Wei Wang and Rui Zhao	
	8.1	A* algorithm	232
	8.2	Hierarchical finite state machine (HFSM) and autonomous	
		vehicle behavior planning	241
	8.3	Autonomous vehicle route generation based on free boundary	
		cubic spline interpolation	247
	8.4	Motion planning method of the autonomous vehicle based on	
		Frenet optimization trajectory	255
	Refe	erences	272

Contents	vii
Contents	VII

9.	Vehicle model and advanced control	273
	Zebang Shen and Rui Zhao9.1 Kinematic bicycle model and dynamic bicycle model	273
	9.2 Rudiments of autonomous vehicle control	278
	9.3 MPC based on kinematic model	291
	9.4 Trajectory tracking	295
	References	305
10.	Deep reinforcement learning and application in self-driving	307
	Jinqiang Wang and Rui Zhao	
	10.1 Overview of reinforcement learning	308
	10.2 Reinforcement learning	309
	10.3 Approximate value function	314
	10.4 Deep <i>Q</i> network algorithm	315
	10.5 Policy gradient	319
	10.6 Deep deterministic policy gradient and TORCS game control	319
	10.7 Summary	325
	References	325
Inde	2X	327